Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
The coronavirus disease outbreak of 2019 has been causing significant loss of life and unprecedented economic loss throughout the world. Social distancing and face masks are widely recommended around the globe to protect others and prevent the spread of the virus through breathing, coughing, and sneezing. To expand the scientific underpinnings of such recommendations, we carry out high-fidelity computational fluid dynamics simulations of unprecedented resolution and realism to elucidate the underlying physics of saliva particulate transport during human cough with and without facial masks. Our simulations (a) are carried out under both a stagnant ambient flow (indoor) and a mild unidirectional breeze (outdoor), (b) incorporate the effect of human anatomy on the flow, (c) account for both medical and non-medical grade masks, and (d) consider a wide spectrum of particulate sizes, ranging from 10 µm to 300 µm. We show that during indoor coughing some saliva particulates could travel up to 0.48 m, 0.73 m, and 2.62 m for the cases with medical grade, non-medical grade, and without facial masks, respectively. Thus, in indoor environments, either medical or non-medical grade facial masks can successfully limit the spreading of saliva particulates to others. Under outdoor conditions with a unidirectional mild breeze, however, leakage flow through the mask can cause saliva particulates to be entrained into the energetic shear layers around the body and transported very fast at large distances by the turbulent flow, thus limiting the effectiveness of facial masks.more » « less
-
Abstract Prediction of statistical properties of the turbulent flow in large‐scale rivers is essential for river flow analysis. The large‐eddy simulation (LES) provides a powerful tool for such predictions; however, it requires a very long sampling time and demands significant computing power to calculate the turbulence statistics of riverine flows. In this study, we developed encoder‐decoder convolutional neural networks (CNNs) to predict the first‐ and second‐order turbulence statistics of the turbulent flow of large‐scale meandering rivers using instantaneous LES results. We train the CNNs using a data set obtained from LES of the flood flow in a large‐scale river with three bridge piers—a training testbed. Subsequently, we employed the trained CNNs to predict the turbulence statistics of the flood flow in two different meandering rivers and bridge pier arrangements—validation testbed rivers. The CNN predictions for the validation testbed river flow were compared with the simulation results of a separately done LES to evaluate the performance of the developed CNNs. We show that the trained CNNs can successfully produce turbulence statistics of the flood flow in the large‐scale rivers, that is, the validation testbeds.more » « less
An official website of the United States government
